USDA/NASA Workshop Breakout Synthesis Report

Focus Area: Carbon Management

Synthesis Team:

Number of Breakout Groups: 1

Total Participants:

Part 1 – Requirements Definition

Part 2 - Research & Data Relevance

Part 3 – Gap Identification

Part 4 – Collaborative Opportunities

<u>Part 1 – Requirements Definition: What are USDA's policy and program</u> needs that might be fulfilled with remotely sensed information?

- 1. Acquire high spatial and temporal resolution imagery at the local level for:
 - Quantifying plant height, canopy structure, and biomass
 - Monitoring natural and human-induced disturbances
- 2. Link remotely sensed data to ground based data measurements and scale to local, regional, continental.
- 3. Monitor and measure management practice, crop type, land cover/land use, crop yields, soil texture and depth (from soil inventories), for use as inputs to models for estimation of carbon stocks and fluxes.
- 4. Improve monitoring and verification of carbon stocks and GHGs fluxes for:
 - Quantification and differentiation between carbon pools (inorganic, organic) at depth
 - Characterizing atmospheric concentrations of GHGs for inverse models
- Geospatial information is needed for program managers involved in the design, implementation, and assessment of conservation programs at multiple time scales.

<u>Part 2 – Research & Data Relevance: What is the state-of-the-research</u> (USDA and NASA current research and capabilities) pertaining to these needs?

- 1. Acquire high spatial and temporal resolution imagery at the local level.
 - Regional and continental scale capabilities are pretty good.
 - RADAR data in use but not widespread

- Good correlation of vegetation cover/type
- 2. Link remotely sensed data to ground based data measurements and scale to local, regional, continental.
 - Small-scale research underway
 - USDA providing GPS locations for NRI and FIA plots
 - NASA integration of satellite data
 - On-going studies
 - Spatial statistics, analysis of quantitative modeling (e.g., nested RS data products)
- 3. Monitor and measure parameters for use as inputs to models for estimation of carbon stocks and fluxes.
 - Have crop yield data and NDVI (good at regional and continental levels)
 - Missing cropping practice data e.g. tillage type
- 4. Improve monitoring and verification of carbon stocks and GHGs fluxes.
 - Using survey data & models to integrate RS & inventory data
- 5. Geospatial information is needed for conservation programs at multiple time scales.
 - MODIS and AVHRR provide repeatability at med to low resolution for land cover and change products, phenological changes over a growing season, disturbance frequency, and identification of areas of interest
 - Landsat has the needed resolution but does not have the repeatability for disturbance frequency
 - Shuttle Radar Topography Mission data sets provide information on topography across the nation
 - Point models used to predict surface processes
 - Use of SAR techniques for classifying vegetation in 2- (texture) and 3-D (polarimetry)

<u>Part 3 – Gap Identification: What are the gaps in existing knowledge and research?</u>

- Acquire high spatial and temporal resolution imagery at the local level
 - We cannot be quantitative, especially in high biomass systems
 - Better temporal and spatial resolution
 - Need 3D biomass profiling linking data sets from active and passive sensors.
- 2. Link remotely sensed data to ground based data measurements and scale to local, regional, continental.
 - Better models, better ways of handling large volume (e.g. standards)

- Restricted access to GPS locations for ground data
- Timing of surveys
- Internal USDA coordination on definitions, etc.
- Lack of ecosystem process models
- Aggregating spatially explicit data
- Fundamental pieces not in place
- 3. Monitor and measure parameters for use as inputs to models for estimation of carbon stocks and fluxes.
 - Missing data on management practice, plant type,
 - Granularity of cropping practice, plant type, rotations, etc.
 - Landscape structure data on a continuous basis
 - Measurements of concentration of GHGs at the local scale
- 4. Improve monitoring and verification of carbon stocks and GHGs fluxes.
 - Measurements of concentrations of GHGs at the local scale
- 5. Geospatial information is needed for conservation programs at multiple time scales.
 - No systematic approach for combining field data, sensor, and models developing data assimilation with models
 - Scaling up local data for meaningful regional, continental estimates
 - Spatial and temporal variability of carbon sources and sinks
 - A better understanding of how weather/climate impacts the success of conservation programs and how such information can assist in the design on short time frames.
 - Higher spatial resolution imagery and hyperspectral imagery for better land cover classifications

PART 4 – Collaborative Opportunities: What are the opportunities for collaborative/cooperative R&D efforts between USDA and NASA to develop products and solutions that serve decision makers?

- 1. Acquire high spatial and temporal resolution imagery at the local level
 - Linking FS inventory data to new spaceborne systems
 - Linking NRI & other USDA collected data
 - Collaborating on developing analytical approaches
 - Use airborne sensors in the near term to conduct pilot studies. (e.g., LVIS, AVIRIS)
 - VCL vegetation canopy LIDAR possible in < 5-years
- 2. Link remotely sensed data to ground based data measurements and scale to local, regional, continental.
 - Take inventory & flux data & scale up using high resolution RS data for

- a large area
- Joint research announcement NRI, FIA, NASS
- Joint working groups better intra-agency coordination
- Dependant on B2 progress
- 3. Monitor and measure parameters for use as inputs to models for estimation of carbon stocks and fluxes.
 - Project/pilots to assess proof of concept in application remote sensing data to identify management practices
 - Redo portions of 70's & 80's LACIE and AgRISTARS projects to assess crop productivity.
 - Create web-based tools and decision support systems
- 4. Improve monitoring and verification of carbon stocks and GHGs fluxes.
 - Developing spatially continuous estimates of soil carbon stocks through integrating soil survey data with high vertical resolution DEMs
- 5. Geospatial information is needed for conservation programs at multiple time scales.
 - EQIP innovation grants
 - Sensor development projects
 - Collaboration on assessments to benchmark new technologies
 - Leverage existing projects on soil/above ground carbon to validate models derived from remote sensing data
 - Multi-scale analysis pooling together unique assets and information from USDA and NASA
 - Comparing methodologies for measuring and monitoring carbon cycling on agricultural cropland, rangeland, and forestland to ensure complementarily
 - Energy title of 2002 farm bill calls for research on sequestration etc.
 - State-level pilot programs
 - USDA/NASA to design a pilot program to identify potential problems in collaboration